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Abstract

Higher education (HE) providers in the UK currently submit summary information about their
courses for display on the Unistats website. A course’s information is known as a Key Information Set
(KIS). Recent sector consultations have suggested a move away from central presentation, towards
mandating HE providers to display KIS on their own websites. In order to regulate this information in
the student interest, some judgement may be required on its compliance with regulations. This
project investigated the possibility of reducing human effort in regulating the future display of KIS.
The main problem associated with regulating information on websites is one of text classification.
Supervised Machine Learning (SML) algorithms were investigated for use in text classification within
this specific domain. They were assessed according to several performance metrics, and
benchmarked against both random and rule-based classification approaches. The current availability
of KIS information on HE websites was not favourable in producing a SML classifier to seek other KIS
information. However, success was found in using a Naive Bayes classifier to generally identify
course information from non-course information. The main recommendation from this project is
that automatic classification is possible in this domain, and will become more viable for KIS
information as universities update their pages. A Naive Bayes classifier for identifying course
information, decorated with a key word classifier to flag potential KIS information, could be the best
solution.



Acknowledgments

This project is the culmination of an MSc undertaken part-time, with the support and funding of my
employer the Higher Education Funding Council for England (HEFCE). Accordingly, | would like to
extend my thanks to HEFCE for the significant investment that they have made in my future, and
their commitment to improving staff skills through training.

Specific thanks to: Dr Richard Puttock (HEFCE), you have been consistent in allowing me time to
expand my knowledge and apply it in a professional context; Professor Irena Spasic (Cardiff
University), for helping me shape this project as a novice to machine learning; Ferielle Jarrett, Mike
Allaway and Kit Rothwell, you have all provided vital personal support over the last two years of
study.



Source Code

All of the source code and other artefacts generated during this project are available at
https://github.com/GreenC90/project.
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Introduction

Context

Key Information Sets and Unistats

Since 2007, prospective higher education (HE) students have been able to access information on HE
courses through the Unistats web site (HEFCE, 2012). Information on the original Unistats website
was primarily from the National Student Survey (NSS) and Destination of Leavers from Higher
Education survey (DLHE). In November 2010 HEFCE published an open consultation on public
information about higher education, specifically on changes to the information published by
institutions (HEFCE et al., 2010). The consultation proposed the creation of a Key Information Set
(KIS) for each course at an institution, where applicable. Contents of the proposed KIS were based on
research aiming to find out what information prospective students find most useful for determining
the relevance of the course to their academic preferences.

Outcomes and responses to the consultation were published in June 2011. They were broadly
positive and HEFCE’s document provided “next steps” for applicable institutions in England (HEFCE
et al., 2011). Through further technical guidance (HEFCE, 2011) and updates, the KIS structure and
plans for its display on Unistats were refined. Originally it was intended that universities display each
full KIS on their own website, but this was found to be impractical by the sector. Instead, it was
decided that a new version of Unistats would be launched in September 2012 and act as a central
point for KIS (HEFCE, 2012). Universities would display an extract of KIS data on their own course
pages via a widget linking directly to the corresponding Unistats page.

Unistats has remained the central location for KIS data since the redesigned site was launched in
2012. In 2015 the HE funding councils launched a joint consultation on the future of Unistats, the
NSS and information to be published by institutions from 2017 (DELNI et al., 2015a). Information
published by institutions is the data focus of this project, relevant responses to the 2015
consultation and expected next steps were publicised in August 2016 (HEFCE et al., 2016). Amongst
other changes the HE funding bodies agreed: to remove detailed course information from Unistats;
transfer responsibility of tuition fee display to institutions; and develop requirements for the way
information is presented on institutional websites, these guidelines will be complete in late 2016 for
implementation by September 2017.

The exact data items that the funding councils expect institutions to display for the 2017-18
academic year are yet to be finalised; fee information has already been agreed, but as the scope of
Unistats is reduced then institutions could viably be asked to display some of the data that was
previously available.
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Figure 1: Screenshot from a Cardiff University Accounting BSc, featuring the Unistats widget (CardiffUniversity, 2016).
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Figure 2: A screenshot from the equivalent Cardiff University Accounting BSc Unistats page (Unistats, 2016).

Resourcing KIS at HEFCE

During the current incarnation of Unistats, HEFCE has collated KIS returns from Further Education
Colleges (FECs) in England and Wales. HEFCE runs a KIS submission system, where FECs upload their
data with the aim of obtaining valid, signed off data before a deadline for the next academic year.
Several members of staff at HEFCE are involved in the design and maintenance of the KIS sign off
system, which although burdensome does ensure that all the data to be displayed on Unistats has
been through a validation process. Collecting KIS specific data is not an entirely simple task for the
institutions involved either, with the majority reporting at least some areas are challenging or
burdensome to produce (DELNI et al., 2015b). Moving a portion of detailed information away from a
central point, such as Unistats, could theoretically reduce the burden at HEFCE. However, if
institutions are required to display certain information in a clear and comparable manner, then
presumably a body acting on behalf of potential students would be required to check this was
happening.
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Figure 3: Diagram of HEFCE’s KIS submission system, used by Further Education Colleges (HEFCE, 2016).

Assuring Compliance

It is clear the sector is moving away from a single central point for undergraduate HE information.
During this transition and afterwards, a problem of how a regulator might ensure compliance arises.
The main issues to solve in assuring compliance with information standards are:

1. There are currently 369 institutions on Unistats, even checking the compliance of course
information from a single course at each institution is daunting.

2. Checking a single course is unlikely to satisfy a requirement of ensuring compliance.
Alternative providers (APs) will also soon be required to comply with information standards,
further increasing the number of institutions who need assessment (BIS, 2015).

4. The data and web pages are changeable without notice, meaning any assessment of
compliance could quickly become out of date.

5. At minimum, a basically trained eye would be required to make an assessment of
compliance.

6. Splitting the assessment up in to more manageable pieces for individuals introduces
problems of consistency; how could it be assured that each person assesses page content in
the same way?

Competing aims of decentralising data display whilst efficiently assuring compliance provided the
context for this project to become relevant. Primary difficulties in a human based approach to this
task are size (number of pages), time constraint and classifying potential compliance. Usefully, the
size and time constraints of visiting many web pages can be handled through web scraping; and
since compliance is related to a textual document, we can use text classification algorithms to assess
compliance.

Aim and Deliverables

The overall aim of this project was to produce a system that could reduce the human effort in
inferring an institution’s compliance with information display requirements. To achieve this, the



system would have to access course information pages, recognise them as such and then make an
assessment on each page’s compliance. This aim has been translated into two major deliverables:
1. A web scraping bot that could crawl a given domain and return text content from web
pages.
2. A document classification model that could, at minimum, classify text content against two
classes: “course information” and “not course information”. Further classes relating to levels
of compliance can be introduced as the model is refined.



Web Scraping Software for Data Collection

Guiding Principles

In order for the classifier to be developed, text data was required from institutional web sites. Given
a set of base URLs, this task can be fully automated using Web scraping. Web Scraping is one term
given to the process of automatically downloading HTML from the internet and parsing it for content
(Brody, 2012). Modern websites tend to be created with common structure between their pages,
when this structure is understood then particular data in a web page can be targeted. In this project
all human readable content was of interest, so the HTML was parsed not to target particular objects
but simply to remove HTML tags. Bots that carry out web scraping will create more work for
themselves by collecting links to other pages from their current target, or by understanding the
website’s URL structure and altering it accordingly. Web scraping is an easily achievable task at the
basic level, with languages like Python offering useful libraries such as Ixml, requests and Scrapy
(Reitz, 2016, Scrapy, 2016). However, the industrial setting of this project lead to a desire for a high
level of control over the web scraping bot(s) and also the ability to easily substitute or tune
components to better serve future data collections.

The entire code base of the project was influenced by the contents of two books in particular;
primarily through reading all of the generic design pattern guidance from Dependency Injection in
.NET (Seeman, 2012) and, secondarily, the opening chapters of Agile Modelling (Ambler, 2002).
Software engineering and design patterns are topics worthy of entire projects in themselves; there’s
no implication here that the areas have been fully covered in preparing to write code for this project.
Instead, a pragmatic approach was adopted, drawing on the books mentioned, experiences gained
through the MSc course and example code bases/advice from those with greater experience at
HEFCE. This approach favoured a simplistic design of connecting several discrete components, each
responsible for its own task (separation of concerns (Makabee, 2012)), along with unrefined
modelling in the early stages. Models were hand sketched, making reference to: possible structuring
of components; seams that would join them; data flow through a large idealised application; and
tasks different potential users should be able to achieve (see Appendix A). The models did not
represent the final code but they did help to shape my thinking and structure my approach in
development; which is an aim of agile modelling as described in Ambler's book. Seeman’s
explanations on Dependency Injection were very compelling and have changed how | structure
programs to favour ease of adjustment, maintenance and unit testing. It wasn’t within my current
technical understanding to implement a full Dependency Injection framework. The currently
favoured system at HEFCE is Castle Windsor (CastleProject, 2014), and | would hope to be able to
use this in the future. Despite no official framework, | was able to gain many benefits by passing
dependencies through a class’ constructor and storing them for later use. Whenever a class would
be accepting dependencies, | created an interface and specified that as the type to expect. Concrete
implementations of functionality inherit the appropriate interface, ensuring they meet the
“contract” of expected functions and return types. In this way, any class that correctly inherits the
interface can be passed in to the waiting class as a dependency (Jensen, 2009).

When considering the data collection requirements of the project, | wanted and was encouraged by
HEFCE towards limiting bot activity. Together it was decided to limit requests to individual domains



to around 500 in any 24 hour period and no more than one request every two seconds. Reasons for
this revolved around not wanting to place unwelcome burden on institutional web servers; the
numbers are arbitrary but should not tax even a small environment. It was also decided that
robots.txt files would not be parsed before access and that bots would be identified with my
organisation and name in the user agent string. A full ethical discussion on web scraping is beyond
the scope of this project but the approach hasn’t yielded any enquiries yet, aggravated or otherwise.
At the time of writing, multiple tens of thousands of pages have been collected. | decided that the
architecture behind each bot should allow for multiple to be run simultaneously without conflict.
Conflict in this case would have meant bots visiting the same pages and making wasteful requests, or
visiting the same domain and possibly breaking the rate limiting.

Main Components

From the guiding technical principles and ethical considerations, it became clear the bot itself could
be a simple program, following a loop of accessing a page, parsing links and human readable content
which were then stored in a database. The database would be a central point to coordinate the bots
as it would have view of all the available information; removing the need for bots to communicate
with each other or make decisions for themselves. A low access rate for each bot also meant that a
traditional Relational Database Management System (RDBMS) would manage data fast enough to
not become a major bottleneck. Relational databases are commonly used by HEFCE and in general
for business applications. The need to keep relations between tables up to date can cause
performance issues when dealing with many concurrent requests, making any API built on top of the
database slow to respond. Through careful structuring of queries and experimenting with the
frequency of requests made by bots, a stable database structure capable of running on a basic
machine was achieved. Whilst individual bot performance was of little concern, the project did
require the capability to collect the 500 daily pages from a variable number of domains; making the
overall performance and scalability of the system a higher priority. For this reason, | chose to make
the bots communicate with the database through a web API, sending data through HTTP requests.
Using a web standard communication protocol means the bots and database can be hosted on one
machine for a compact, small collection; then if a larger dataset is required, they can be easily
moved to multiple machines communicating via a specialised web server and storing data in a fully
tuned database server.
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Figure 4: Diagram showing the interactions between the bot(s), web API and database.

Normally in the early stages of any coding task a name for the overarching project is required,
especially when written in C# (as this project is) with its heavy use of namespaces. Code in this
project was written under the namespace mScrape, as web scraping is a main task and an “m” prefix
also allows the course’s award category of MSc to be included.

Web Scraping Bot

mScrape.webBot is the solution containing all the required interfaces and their concrete
implementations for the web bot to request pages, parse their contents and communicate with the
service API. There is purposefully an easy to follow thread of execution through the steps that the
bot takes, this main logic is stored in bot.cs and executed via the Start function.



public void Start(){
while (true) {
// get work from the API

foreach (page in work) {
// access the page

// parse human readable content

// parse links to other pages

}
// send the links back to the API

// send the human readable text back to the API
}
}

Pseudocode 1: mScrape.webBot.bot.cs

Each of the main actions of the bot is handled by an appropriate implementation of an interface, all
of these are passed in via the bot’s constructor. The pseudocode above is very close to the
functional code, demonstrating the clean separation between high level operation and technical
implementation that is possible with the design pattern. Because these interfaces were designed to
aid in separation of concerns, their public members are self-explanatory. The particular
implementations used for most of the project made use of Selenium for page requests, HTML Agility
Pack for parsing text and links from the raw HTML and RestSharp for communicating with the API
(HtmlAgilityPack, 2012, RestSharp, 2016, SeleniumHQ, 2016). Selenium is worth a further mention as
it allowed me to ensure the source code being downloaded was as close to what a human would be
served as possible. Most often, Selenium is used for regression testing web applications because it
allows the user to automate a number of different web browsers. Using a full browser ensured
HTML that would be created on page load had completed before downloading the source. As
performance of each bot was already throttled, the overhead of using a browser versus a direct
request (or headless browser) was irrelevant.

Communication with the Database

Once data is passed back to the web API by the bots, it moves through further layers of abstraction
that represent a data repository and data context. A data repository receives the data from the API
and then takes some appropriate action using the data context. A repository was mainly used in this
case for future development; the benefits of separating business logic from data access are very
desirable, as is the ability to cache data centrally, but at this point the repository simply passes calls
straight through to the data context (Microsoft, 2007). Keeping a data context separate from the API
means that a new technology for data storage could be more easily substituted into the application;
the project currently utilises SQL Server but HEFCE also heavily utilises SAS.

In the current configuration, different calls to the web API relate directly to individual SQL stored
procedures; all of the SQL database objects vital for operation are stored in the mScrape.database
solution. spGetWork is the procedure that encapsulates all the logic controlling what pages a bot
requests, whilst making sure the ¢.500 page limit isn’t broken and that each bot should be crawling a
separate domain. Bots “should” be crawling separate domains, but the application could be



configured to mean this wasn’t the case. Normal operation would mean that many more domains
were being crawled than bots being used, so each call to spGetWork cycles through the list of
domains and serves work back to the waiting bot; if only one domain was being searched and many
bots were used then all would search that domain and the rate limiting of one page every two
seconds would be easily broken. Edge cases such as this would be accounted for if the main focus of
the project was an industrial grade web crawler; as the web bot code is a secondary but worthwhile
side effect, user interfaces and edge case handling haven’t yet been implemented.

When operating with data that has already been classified and stored in the “classified” table,
spGetWork is able to prioritise work for bots according to where course information has been found
in the past. This is achieved by calculating a rate for how many of the leaves at each node previously
served have been classified as course information. For example, if bots have already visited ten
pages attached to the parent node someUniversity.ac.uk/courses then the hit rate for that
node is the number of pages classified as course information divided by ten. If all ten pages were
course information then the hit rate is one and other pages beginning
someUniversity.ac.uk/courses would be crawled as a priority. The number of course
information pages found at a node serves to break ties where the hit rate is the same, finally if both
of those measures are equal (which is possible when bots request small amounts of work) then a
random selection is used. Prioritising work for the bots in this way adds both protection against false
course information classification and works well with how many universities structure their web
pages. Protection against false positives is offered because as the classifier assesses more pages
from the node then the hit rate is likely to quickly drop below that of a node actually representing a
root for some course information. With the prevalence of content management systems and a
unified web site for each institution covering courses in multiple academic schools, many chose to
structure their sites with a common root for course information (either all course information or
sometimes at a more granular level like undergraduate versus postgraduate or school). Prioritisation
based on previous outcomes therefore causes the bots to gravitate towards course information,
which anecdotally tends to link to further course information as pages suggest similar courses in the
school or subject. This is of course subject to the system having a classifier that is accurate enough,
the tuning of classifiers for this purpose is discussed later.

classified
Id
pageType

work

v id servableDomains
domain domain
address lastServed
[content]
lastServed




Figure 5: Entity relationship diagram of the underlying database.

Example Web Scrape

For the purpose of clarity it may help to have an example of how the bot would operate on a simple
web page.

[ Simple Page X

C | © file:///D:/project/classificationTesting/simple.html

This is a simple page.

With a link to Google.

Figure 6: A simple web page rendered in Google Chrome.

The simple page above was hosted statically on my machine, so Chrome defaulted to the “file”
protocol rather than HTTP(S), but the effect is the same. Like other web pages, this simple page is
built using HTML, Hyper Text Mark-up Language.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>Simple Page</title>
</head>
<body>
<style> a {color: gray} </style>
<p>This is a simple page.</p>
<p>With a link to <a href="http://www.google.co.uk">Google</a>.</p>
<script>console.log("hello, World!")</script>
</body>
</html>

Figure 7: HTML for a simple web page.

Despite being simple, this web page demonstrates the parsing issues that the bot deals with before
passing the human readable content back to the database. Comparing the rendered page to the
source HTML shows there’s a lot more information contained in the HTML document then the text
for a human to read. In this project, we're specifically interested in what a University provides for
people to read though, so all the extra information will need to be removed. First, “style” and
“script” tags, which are not rendered on the page are removed.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>Simple Page</title>
</head>
<body>
<p>This is a simple page.</p>
<p>With a link to <a href="http://www.google.co.uk">Google</a>.</p>
</body>




All the human readable content (except the title) of a webpage is contained within children of the
“body” tag, so everything not in the “body” tag can be ignored.

<body>

<p>This is a simple page.</p>

<p>With a link to <a href="http://www.google.co.uk">Google</a>.</p>
</body>

Next, all the HTML tags are removed.

This is a simple page.
With a link to Google.

Finally, white space is compressed and the result will be sent back to the database.
This is a simple page. With a link to Google.

The simple page is now represented in one string, which can be easily stored in a database and later
recalled for classification. Actual webpages are obviously more complicated than the example here,
but broadly the approach worked to strip non-human readable data from the source code. The
approach did seem to not cope with the “iframe” tag very well though. An iFrame is a way nesting
HTML documents that perhaps confused the way | had coded this stage of the bot. For an example
of a real world web page and the output after the bot parsed it, refer to appendix B.



Text Classification

Algorithms for text classification have been well utilised and explored within machine learning, data
mining and related areas (Aggarwhal and Zhai, 2012). A complete dissection and comparison of text
classification techniques warrants a project in itself, therefore this section aims to provide a small
grounding in the major terms and techniques used. Two excellent sources of information for this
section were descriptions provided in Aggarwhal and Zhai’s chapter of Mining Text Data, “A Survey
of Text Classification Algorithms”, and the contextual examples available in Witten et al.’s book
“Data Mining, Practical Machine Learning Tools and Techniques”. There are many technically
complex texts available on this subject, but these two provide a detailed enough explanation to
practically implement classifiers.

Classification Overview

The use of algorithms to classify data or objects is often introduced with an example in which species
of the iris flower are classified based on sepal and petal measurements (Fisher, 1936). Classification
in general is a problem associated with knowing some properties of an object and having a class
assigned to the object based on them. Different situations of classification will lend themselves
towards “soft” or “hard” versions, where the former implies finding the probability that an object is
of a certain class and the latter makes a clear categorical assignment.

In many applications, rule based classifications are used in isolation and will be familiar to anyone

with basic programming knowledge. The structure of “if (comparison is true) then... else...” is a
fundamental concept in most programming languages. Such a rigid structure of black and white
judgements is sufficient in situations where all the variables for comparison are known and
accounted for. Traditional rigid data structures with a small number of properties and clear
boundaries between classes lend themselves well to this kind of processing. However in a data-rich
environment this approach quickly becomes cumbersome and impractical, as the number of rules
and exceptions to rules multiplies rapidly (Guruswamy, 2015). Writing a large of amount of strict rule
based statements often makes it difficult to assess what impact changes to code will have, leading to
difficulties maintaining or updating key pieces of logic. Unfortunately updating the logic will also be a
regular requirement if code deals with highly changeable real world data, especially when the data is

semi- or unstructured.

In the context of our study, institutional websites may potentially hold more variety than can be
processed by simple rules. Rather than manually creating classification rules, we can exploit readily
available training data to implement a supervised machine learning approach instead. There is a
large variety of such approaches that can be used. According to “no free lunch” theorem, there is
not a single machine learning algorithm that will consistently outperform all other methods. In other
words, the best performing algorithm depends on the type of problem at hand and the data
available. This means that an algorithm appropriate for the given problem and data available, should
be chosen after systematically evaluating a range of different algorithms. This can be achieved by
cross-validation and comparison of the results achieved on the training data. Evaluation of classifiers
is discussed following a brief introduction to some commonly used algorithms in supervised machine
learning.



Supervised Machine Learning

Approaches to machine learning can be split into one of three categories: unsupervised, where
algorithms assign classifications to data according to similarities, and with no previous knowledge of
the domain; supervised machine learning (SML), where a corpus of pre-labelled data is fed into the
algorithm for comparison with new data, before categories assigned; and semi-supervised learning,
which attempts to overcome shortcomings of the previous two methods through combining them
(McNulty, 2015, Aickelin, 2015).

Supervised learning mimics the way that skills are seemingly passed between people in formal
education. With enough examples from the domain, showing differing properties and their effect on
outcomes then a learner can start to predict future outcomes in the same domain. The main
challenge with this approach is providing enough labelled examples to the algorithm to reliably train
it. The dataset containing labelled examples from the domain is known as the training data. Training
data must contain examples of all the classes the final model is expected to identify. This makes
training data specific to the domain that a classifier will operate in. If the classifier will be
differentiating types of news article, it must be trained using data containing all the types of news
article it may reasonably encounter. Even when the number of classes to identify is small, if the
domain features highly variable information then the training data will need to cover a wide area.
This increases the number of training instances required, which will all need to be labelled manually
and could cause a bottleneck.

In this project, | chose to explore the use of supervised learning algorithms. | found several
institutional websites had a structure that allowed automatic labelling of pages. This is a feature
particular to the domain and couldn’t necessarily be relied upon in a future project, but here it
offered the opportunity to collect a relatively large amount of labelled training data with very little
human effort. The labelling was achieved through URLs from specifically chosen institutions, there is
no guarantee that others would follow the same pattern; this labelling isn’t a viable pattern for a
classifier itself. As an aside, | did attempt to have the bots crawl sites given keywords in URLs, but
tuning the bot for use on one site made it too specific to be of use on others.

Naive Bayes

In any body of text, each word imparts different amounts of influence over how the larger body
might be categorised by a human. This influence varies by the word, their context and location in a
document. For example, a word in a title might give a heavy indication as to the category of some
text. This thinking is intuitive to humans, but complex to represent in an algorithm. A simpler
approach is to treat every word, regardless of context, as if it has equal effect on the outcome of the
classification. Training data can be used to determine probabilities for each word being present in a
document of a particular class. When a new document is passed through the classifier, then it is
classified according to the probabilities of those words present in both the model and new
document. This is the approach of Naive Bayes; the “naive” refers to the assumption that word order
and context have no influence on the outcome (each word is an independent event), and “Bayes”
refers to Bayes’ rule. The naive assumption is important, because without it then it is mathematically



incorrect to multiply the probabilities from each word. Bayes’ rule is essentially multiplying the
probabilities that each word is related to the class in question, which is a much simpler calculation
than accounting for word order and/or location with the document.

Baye’s rule states that with an hypothesis H and evidence towards that hypothesis E, the probability
of H being true is given as:

Pr[E | H]Pr[H]
Pr[E]

Figure 8: Baye’s rule, from Witten et al.

PrlHIE]=

The “Pr[ | ]” notation is used to say the probability of one thing, based on another. So Pr[H|E], is the
probability of the hypothesis being true given the evidence. Each classification can be seen as a
separate hypothesis, so Pr[H|E] will be calculated for the hypothesis that the document is course
information, then non-course information, then Unistats information. Knowing the probability that
each word in a group of documents holds for each class (Pr[E|H]) and the “prior probability” (Pr[H])
then Pr[E] can be ignored. The prior probability is the general probability that a hypothesis is true
given the past examples, in this project Pr[H] for each hypothesis would be the proportion of each
document class in the training set. Pr[E] can be ignored because it will be the same between classes,
therefore values obtained purely from the top part of the fraction can be compared.

Witten et al. describe Naive Bayes as having a reputation for being fast and quite accurate, which
would be useful features in a real time application of the finished project, if it is also the case in this
domain.

Nearest Neighbour

A nearest neighbour algorithm takes a set of labelled data and delays its work until classification
time, when it will attempt to find the closest representation(s) of an unlabelled instance in its
labelled set. Imagine a real world example using physical neighbours in a street or small community.
A “nearest neighbour” in this sense is not simply the person living in the next house, but is a person
whose wider attributes closely relate to yours. If all of person A’s characteristics are known and
identical to person B’s, it is not unreasonable to predict an unknown characteristic of person B to be
the same as person A’s. This is a simplified nearest neighbour approach, but is an approximation of
how the text classification could work. In training the classifier, the model receives a list of
classifications that have attached frequencies or Boolean “present/not present” values for a list of
words. When an unclassified document is passed to the classifier, then the model will attempt to
locate the item(s) in its training data that is most similar. The known classes of the neighbour(s) will
be used to classify the unlabelled document.

Nearest neighbour classification is known as “lazy” because of the delay in work, it has advantages in
domains where there are huge amounts of data. It is reportedly used to great affect by large online
retailers for suggesting products to customers based on people who represent their nearest
neighbour |Abernethy, 2010, Data mining with WEKA", Part 3: Nearest Neighbor and server-side



library~. This has advantages over other machine learning algorithms in that online retailers tend to
have a vast amount of data, meaning pre-processing recommendations for customers based on all
the available data is inefficient. Nearest Neighbour’s “lazy” approach also means recommendations
are only generated when required and using fewer points of information, assuming there is an
effective search strategy for the nearest neighbours.

Random Tree

A tree algorithm constructs nodes at which decisions are made, outcomes at nodes will process an
instance in the direction of a classification (Brownlee, 2016). A simple binary tree can be used to
classify objects, the tree is “binary” because at each node a comparison is made that results in a
“yes” or “no” answer. It would be trivial to construct a binary tree that grouped models of car, for
instance, by having nodes checking for engine size, number of seats, number of doors etc. Random
Tree classifiers are based on the traditional decision tree model, except in this case only a randomly
chosen selection of attributes are available at each node. A logical extension of the Random Tree is a
Random Forest. Random Forest classifiers combine multiple Random Tree classifiers and average the
classification result across them.

As a tree method attempts to keep on splitting instances into their respective classes a tree can end
up large, with single instances at the ending leaf nodes. The decision nodes immediately above these
leaf nodes will be very specific to the instances below them. These nodes are now too specialised
and less useful in a production environment. This is one way that Tree methods can become over
fitted. A stopping criterion can be used to set a minimum number of instances to have at each leaf
during building the tree, or pruning can be used afterwards to remove those branches that have
become too specific (Brownlee, 2016).

Support Vector Machine

Joachims’ 1998 conference paper on the use of Support Vector Machines (SVM) for classifying text
data has been cited over 7.5k times according to Google Scholar; proving the topic of SVM use is
popular within the machine learning domain (Joachims, 1998). Joachims lists their benefits for use in
text classification based on strengths of: being able to deal with high dimensionality; and, success in
domains where classes are linearly separable. In text classification, the number of words (features)
chosen in the training and subsequent unseen data is also the number of dimensions in the problem.
It is trivial to see that even medium sized documents may have many thousands of words within
them. Approaches that do not scale well with increased dimensionality therefore rely on reducing
the number of words used to make a classification. In this project the data was limited to a 1000
word vector for each instance. Joachims argues that in text classification there very few irrelevant
words and therefore as many as possible should be included; making use of an SVM an obvious
choice. Regarding types of document being linearly separable, this refers to classes being
distinguishable by a linear “decision surface”. In a two dimensional problem represented on a graph,
this would be a straight line. Joachims gives the example that many of the Reuters news agency
categories are linearly separable, | have not assessed the linear separability of this domain’s classes
however.
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Figure 9: Linearly separable classes in two dimensions (Kawaguchi, 2000)

In the example above the classes “O” and “X” are linearly separable in two dimensions, because a
straight (linear) line can be drawn between them. Picturing a similar graph for 1000 dimensions isn’t
required, the point Joachim’s makes is that different document classes don’t tend to mix up with
each other. A document tends to either be of one type, or another.

Evaluating Classifiers

When a classifier has been trained using labelled data it is important to assess its accuracy against
separate test data in order to have an estimate of how well it will perform on unseen data once the
system is deployed in practice. The test data should not have taken any part in building the classifier
under test. In this project that would mean using entirely different institutional web pages for
training and test data. Accuracy in relation to the training data will likely be an overestimation of the
classifier’s performance, because the classifier has been built with this specific training data in mind.
Consider a classifier that is 100% accurate at making categorical assignments against its training
data, because it already has full knowledge of every instance’s class. Such a classifier could comprise
100 “if” statements for 100 instances to be classified, assigning a class because each instance’s ID
has been hardcoded into the corresponding “if” statement (“if (ID = 1) then class =...”). This classifier
would have seemingly perfect performance against the training data by a simple measure of
accuracy. It might seem reasonable to declare this classifier as 100% accurate, but it is clear that this
classifier will fail dramatically when fed new data. Even if the new data contains an ID property to be
assessed, any correct classification will be based on the chance that the new data contains instances
with the same ID and class as the old data. This is an extreme example, but the classifier is suffering
from “overfitting”; it has become too specific to one dataset to be useful in a general context. A
difference in accuracy against training data compared to test data can indicate to what degree the
classifier suffers from overfitting. A smaller difference could indicate greater stability in the classifier,
but of course without necessary accuracy then the classifier would still be inappropriate. As this
project deals with web pages, there is a very wide scope for the content of the data that will be
encountered. Because of this, a classifier with a small reduction in accuracy from training to test
could be desirable, likely more so than another that has a higher test accuracy but larger difference
to its training accuracy (assuming both have baseline accuracies that are high enough).

Keeping in mind what’s previously been said about training versus test data, there is a method
known as cross validation that is available to help assess performance against training data more
accurately. Cross validation is useful in situations when labelled data is sparse and/or there is a



reasonable degree of randomness in the classifying algorithm (breaking ties, random start points
etc.). In cross validation the term “fold” refers to the number of times a classifier will be constructed
and tested, the accuracy of each fold is averaged for a final result. For each fold, a proportion of the
training data is excluded from creation of the classifier, and then used in place of “true” test data to
assess accuracy. For example, a 10 fold cross validation using a dataset of 100 instances: in fold one
instances 1-10 are excluded during training and then used as labelled test data; in fold two instances
11-20 are excluded whilst a new classifier is created, then again the accuracy is assessed with the 10
excluded instances. The method continues in this way until all 10 folds have been used to make a
classifier and tested. A final accuracy figure obtained through cross validation can still suffer from
the issues discussed earlier, but extremes of performance should have been evened out by the
averaging process.

So far, we've only discussed classifiers in terms of one measure, which is accuracy; the overall
percentage of correct classifications that it makes. At this point a distinction should be made
between the four types of result that a classifier can achieve for each instance. The four categories
of result are combinations of true/false and positive/negative predictions. In a situation where a
classifier was attempting to assign a class labelled by letter, the following table shows the possible
results with respect to the class A; this kind of table is known as a confusion matrix.

Predicted Class
A Not A
A|True Positive False Negative
Not A|False Positive True Negative

Actual Class

Table 1: Four possible results for assigning a class.

True Positives + True Negatives

Accuracy =
y True Positives + True Neagatives + False Positives + False Negatives

When talking about accuracy both of the “true” outcomes count, their proportion of the total
classifications is the accuracy itself. In this project, there’s no particular good or bad outcome
associated with an incorrect classification of one webpage; at least, not with the current compliance
guidelines. Other situations such as clinical diagnoses carry with them more obvious negative
consequences for certain types of result. A false positive from a classifier predicting a debilitating
disease would warrant further more costly tests, a false negative could mean the person not
receiving vital treatment; both of these false results have negative consequences but the latter is
clearly worse. In these situations a user can add weight to the predictions made by a classifier. In a
clinical example it would have to be much more certain a person was negative for a disease, before
classifying them as such.

“Precision” and “recall” are terms used in both information retrieval and classification. In a
classification scenario precision is the ratio of true positives to the sum of both true and false
positives (Descoins, 2015). Precision is a measure of a classifier’s “exactness” at correctly identifying



a class, what proportion of all the instances labelled as “A” were actually “A”? Recall is the ratio of
true positives to the sum of true positives and false negatives, what proportion of all the actual “A”
class instances did the classifier identify? Using both precision and recall allows us to avoid falling
into some particular pitfalls associated with using accuracy alone. Consider a situation where a
classifier only ever labelled instances as “A”, regardless of their properties. In this situation all
accuracy tells us is the proportion of the dataset that were “A”. Inspecting only recall in this situation
could also be misleading, as it will be 1.0 because of course every instance of “A” was classified
correctly. Bring in precision though and we’d see a much lower ratio. Similarly a classifier could be
created with better precision by only classifying instances as “A” when it was absolutely certain, but
now the recall would falter as many real instances of “A” would be missed. Considering the example
above regarding clinical diagnoses, it may be desired to favour recall over precision in certain
situations. If people labelled “A” are those that will not suffer from a disease, then higher precision
will ensure we’re more certain about the people in that group and who will therefore receive no
further screening. It would be expected that some people on the borders of classification for “A”
would not be labelled as “A”. They would suffer the inconvenience of further tests but in doing so
reduce the chance that any people truly “not A”, and therefore may have the disease, were
overlooked. A classifier that made no mistakes would have precision and recall of 1.0, but this is
unlikely in any real-world application; in reality there is a balance to be made between recall and
precision. One way of assessing the balance between recall and precision is using the F-measure.

True Postives

Precision = — —
True Positives + False Positives

True Positives

Recall =
True Positives + False Negatives

Precision - Recall

F=2-
Precision + Recall

This version of F-measure is also known as F; and equally weights precision and recall in the
calculation. Optimising for F-measure can help create a classifier balanced in both recall and
precision, which may or may not be desired in the final application.



First Stage Classifier Inplementation

Guiding Principles

| investigated a data mining software package called Weka; available from the University of Waikato
in New Zealand (Hall et al.,, 2009, UniversityOfWaikato, 2009). Weka is a popular open source
framework, with implementations of machine learning algorithms that can be used in Java code by
programmers; Hall et al. (2009) has been cited over 12k times according to Google Scholar. Weka is
not only a framework usable in code, but comes with a fully-fledged GUI program for investigating
data and applying machine learning algorithms. Some of those involved with writing the software
have also released an accompanying book, exploring data mining from a practical rather than
technical or mathematical perspective (Witten et al., 2011). Witten et al.’s book provided a
grounding in the knowledge required to build a classifier. | had previously read the opening chapters
of a more technical text but found the explanations too abstract (Alpadym, 2014).

One potentially large issue with using Weka'’s libraries for the classifier was it being coded in Java. As
HEFCE generally use .NET technologies | wanted to interact with the library through C#. If this wasn’t
possible then a classifier in Java could easily exchange data with the system, thanks to its design
featuring a web API. Fortunately Weka documentation pointed towards using some third party
software called IKVM (Frijters, 2014); using examples and guidance from this documentation | was
able to port the Weka.jar file in to a .dll for use with C# (WEKA, 2009a, WEKA, 2009b).

Having no previous experience in machine learning algorithms, | collected a dataset for building
models and testing them, then created several classifiers to try and gauge their baseline
effectiveness in this application. The following sections describe the data and models used to
explore the possibilities of classifying course information.

Training and Testing Data

Using the web bot, data was collected from a range of institutional websites, Unistats and non-
sector websites. Data from non-sector websites was included to help not over fit the classifier to
university web pages. Inclusion of non-sector data wasn’t strictly required as the bot would be
limited to specific domains in the future, but this wasn’t certain during early stages of classifier
development. Unistats data was included on the possibility that an institution may have used words
similar enough to trigger a classification, although it was expected that no universities would have
done this judging by previous sector consultations.

The university websites selected for data collection were chosen because manual inspection of their
sites revealed a common node for course information; allowing for mass classification of pages
based on their URLs. Gaining enough labelled data to build a classifier is a common issue in data
mining, as discussed by Witten et al. A clustering based approach to labelling training data is
explored later. URL based labelling worked for this training data because they were manually
inspected; the web bot did, for a short period, attempt to access course information based on words
in the URL (like course or undergraduate) but the results were very unpredictable and too specific to
how a website was structured. The bot was tuned to help find course information on individual



websites, resulting in a mix of course and non-course information from these universities (ncl.ac.uk,
dur.ac.uk and exeter.ac.uk). For others, it was specifically guided away from course information or
left to randomly collect pages (shef.ac.uk, ucl.ac.uk). It is expected that some non-course
information pages would have been incorrectly labelled in this approach, but the sheer number of
correct classifications should drown out this noise.

Data for testing classifiers was collected from four universities and also mass labelled using URLs as
either course information or not course information. The test data didn’t contain pages from the
Unistats site as a production version of the classifier would not be used against it. Including Unistats
pages in the training data did mean the potential for a page to be classified in that category. When
this did occur these pages were inspected manually to see if the classification was accurate, but it
was not expected to be so.

Domain Total Pages Not Course Info Course Info Unistats

www.ncl.ac.uk 988 395 593 0
www.dur.ac.uk 900 315 585 0
www.exeter.ac.uk 798 454 344 0
www.bristol.ac.uk 763 463 300 0
www.cardiff.ac.uk 720 426 294 0
www.lboro.ac.uk 671 419 252 0
www.plymouth.ac.uk 541 433 108 0
www.liverpool.ac.uk 524 296 228 0
unistats.direct.gov.uk 501 171 0 330
www.shef.ac.uk 499 482 17 0
www.bbc.co.uk 494 494 0 0
www.tri247.com 493 493 0 0
www.ucl.ac.uk 464 458 6 0
www.theguardian.com 425 425 0 0
www.huffingtonpost.co.uk 414 414 0 0
www.hefce.ac.uk 247 247 0 0
wonkhe.com 99 99 0 0
www.educationuk.org 52 52 0 0
courses.leeds.ac.uk 5 0 5 0
www.nottingham.ac.uk 2 0 2 0
Total 9600 6536 2734 330

Table 2: Domains used in training data and number of pages as classified through URLs.

Domain Total Pages Not Course Info Course Info Unistats

www.birmingham.ac.uk 874 390 484 0
www.surrey.ac.uk 655 440 215 0
www.brookes.ac.uk 434 306 128 0
www.canterbury.ac.uk 92 69 23 0
Total 2055 1205 850 0

Table 3: Domains used for test data.



Domain Path Page Type
courses.leeds.ac.uk http://courses.leeds.ac.uk courselnfo
courses.uwe.ac.uk http://courses.uwe.ac.uk courselnfo

unistats.direct.gov.uk
unistats.direct.gov.uk
unistats.direct.gov.uk
unistats.direct.gov.uk
unistats.direct.gov.uk
unistats.direct.gov.uk
unistats.direct.gov.uk
unistats.direct.gov.uk
wonkhe.com
www.bbc.co.uk
www.birmingham.ac.uk
www.bristol.ac.uk
www.bristol.ac.uk
www.brookes.ac.uk
www.canterbury.ac.uk
www.cardiff.ac.uk
www.dur.ac.uk
www.educationuk.org
www.exeter.ac.uk
www.exeter.ac.uk
www.hefce.ac.uk

https://unistats.direct.gov.uk/Institutions
https://unistats.direct.gov.uk/Search/SubjectCode
https://unistats.direct.gov.uk/subjects/cost
https://unistats.direct.gov.uk/subjects/employment
https://unistats.direct.gov.uk/subjects/entry
https://unistats.direct.gov.uk/Subjects/Overview
https://unistats.direct.gov.uk/subjects/satisfaction
https://unistats.direct.gov.uk/subjects/study
http://wonkhe.com/blogs

http://www.bbc.co.uk/news
http://www.birmingham.ac.uk/undergraduate/courses
http://www.bristol.ac.uk/study/undergraduate/2017
http://www.bristol.ac.uk/study/undergraduate/search/
https://www.brookes.ac.uk/courses/undergraduate
https://www.canterbury.ac.uk/study-here/courses/undergraduate
http://www.cardiff.ac.uk/study/undergraduate/courses
https://www.dur.ac.uk/courses
http://www.educationuk.org/global/
http://www.exeter.ac.uk/undergraduate/courses-by-subject/
http://www.exeter.ac.uk/undergraduate/degrees/
http://www.hefce.ac.uk

www.huffingtonpost.co.uk http://www.huffingtonpost.co.uk/

www.|boro.ac.uk
www.liverpool.ac.uk
www.ncl.ac.uk
www.nottingham.ac.uk
www.nottingham.ac.uk
www.plymouth.ac.uk
www.plymouth.ac.uk
www.shef.ac.uk
www.surrey.ac.uk
www.theguardian.com
www.tri247.com
www.ucl.ac.uk

Table 4: URLs used for mass labelling, note inclusion of sector pages not from universities like wonkhe.com and

hefce.ac.uk.

http://www.lboro.ac.uk/study/undergraduate/courses
https://www.liverpool.ac.uk/study/undergraduate/courses
http://www.ncl.ac.uk/undergraduate/degrees
http://www.nottingham.ac.uk/ugstudy/courses
https://www.nottingham.ac.uk/ugstudy/courses
https://www.plymouth.ac.uk/courses/undergraduate
https://www.plymouth.ac.uk/courses?course_index=
https://www.shef.ac.uk/prospectus
http://www.surrey.ac.uk/undergraduate
https://www.theguardian.com/education/
http://www.tri247.com

notCourselnfo
notCourselnfo
unistatsinfo
unistatsinfo
unistatsinfo
unistatsinfo
unistatsinfo
unistatsinfo
notCourselnfo
notCourselnfo
courselnfo
courselnfo
notCourselnfo
courselnfo
courselnfo
courselnfo
courselnfo
notCourselnfo
notCourselnfo
courselnfo
notCourselnfo
notCourselnfo
courselnfo
courselnfo
courselnfo
courselnfo
courselnfo
courselnfo
notCourselnfo
courselnfo
courselnfo
notCourselnfo
notCourselnfo

http://www.ucl.ac.uk/prospective-students/undergraduate/degrees/ courselnfo

Native C# Classifiers

Since there is significant overhead in developing a trained classifier it's worth first checking that
usable results can’t be generated via simpler means; a “simplicity first” approach is also advocated
by Witten et al.. This also has the effect of offering some baseline performance with which to
compare more complex classification algorithms. All the native classifiers were built on the training
data, repeated ten times when there was a random element to the classification. Where a classifier
was in essence “trained” (as opposed to purely random) then it was also assessed against the test
data. The native C# classifiers use string functions designed to operate on an unbroken string, so
they consume the sing string representing each website.



Random classifier

The most basic of classifiers that could be used in this situation is a random classifier that takes no
account of the text and simply assigns a category to pages with equal probability. Results from this
classifier represent an absolute baseline minimum for any future classifier.

Total Average Success Min Max
9600 30.6% 24.9% 39.1%
Classified
notCourselnfo courseinfo unistatsinfo
notCourselnfo 2026 2191 2320
Actual courseinfo 985 780 968
unistatsinfo 6 154 170
Recall Precision F
notCourselnfo 0.310 0.671 0.421
courselnfo 0.285 0.248 0.263
unistatsinfo 0.516 0.050 0.092

Table 5: Averaged results from a random classifier against training data.

As could be expected, over ten runs choosing one of three categories (notCourselnfo, courselnfo,
unistatsinfo) the classifier achieved a success rate approaching one third.

Random Proportional classifier

One advancement on a random classifier would be to classify pages based on their likelihood of
existing in the dataset. For this classifier proportions of the three categories were found in the
training data and then used to assign a category based on a random integer falling within an
equivalent range. A 1000 integer range was used, giving an accuracy 0.1% when representing the
proportions of page types in the training data.

Average
Correct Total Average Success Min Max

5266 9600 54.9% 49.2% 59.1%



Classified
notCourselnfo courselnfo unistatsinfo

notCourselnfo 4474 1829 233
Actual courselnfo 1837 792 105
unistatsinfo 210 120 0
Recall Precision F
notCourselnfo 0.685 0.686 0.685
courselnfo 0.290 0.289 0.289
unistatsinfo 0.000 0.000 0.000

Table 6: Averaged results from a random proportional classifier against training data.

Results from this classifier reach over 50% accuracy, although it would be expected to reduce closer
to 50% in more runs against this data. This is because the classifier has been trained against the
data, so the ranges in which the random integer may fall (to assign a category) very closely represent
the actual distributions in the data. This approach should eventually yield a 50% success rate on this
data because the decision on success has now been reduced to a 50/50 choice, was the integer in
the correct range or not? In the previous random classifier 33% would be the eventual end point as
the classifier was choosing one of three categories with no preference based on knowledge of the
data.

Whilst a 50% success rate may seem a useful starting point, this classifier would suffer from
overfitting when assessing other data. This classifier could be fed 100 known course information
pages and it would still classify some of them as not course information, regardless of their content.
Future success of this classifier relies on the training data having proportions of page types that
closely represent the proportions of page types in unseen data. In ten runs against the test data the
classifier had much increased variance in its accuracy, but still did approach 50% success on average.
However, the variance of this classifier means that average success rate is an inaccurate
representation of its real world performance. Against unlabelled data a user couldn’t know where in
the wide possible range of performance the classifier is sat.

Average Correct Total Average Success Min Max
988 2055 48.1% 19.9% 81.0%
Classified
notCourselnfo courselnfo unistatsinfo
Actual notCourselnfo 781 299 122
courselnfo 646 207 0
Recall Precision F
notCourselnfo 0.650 0.547 0.594
courselnfo 0.243 0.409 0.305

Table 7: Averaged classification data for a random proportional classifier, against test data.



Any Keyword

As content from each page is available to a native classifier as well as for training through Weka, it
can be used to help classify pages. Using simple string functions in C# the appearance of keywords
was used as an indicator of page type; these key words were selected manually. Separate arrays of
words were used to classify course information and the more detailed Unistats information. If any
word from the array was present in the page content then the page was classified accordingly, with
Unistats trumping course information when both classifications applied. The following are results
from using some different combinations of keywords against the training data. These results were
from a single run, as there was no random element to the classification.

private string[] courseKeyWords = { "course" };
private string[] unistatsKeyWords = { "satisfied" };
Classified
notCourselnfo courselnfo unistatsinfo
notCourselnfo 2663 3706 167
Actual courselnfo 24 2448 262
unistatsinfo 0 91 239
Recall Precision F
notCourselnfo 0.407 0.991 0.577
courselnfo 0.895 0.392 0.545
unistatsinfo 0.724 0.358 0.479
Table 8a
private string[] courseKeyWords = { "course", "study" };

private string[] unistatsKeyWords =
{ "satisfied", "average salary" };

Classified
notCourselnfo courselnfo unistatsinfo
notCourselnfo 1704 4660 172
Actual courselnfo 13 2443 278
unistatsinfo 0 74 256
Recall Precision F
notCourselnfo 0.261 0.992 0.413
courselnfo 0.894 0.340 0.493
unistatsinfo 0.776 0.363 0.494
Table 8b
private string[] courseKeyWords = { "study" };

private string[] unistatsKeyWords = { "satisfied" };



Classified
notCourselnfo courselnfo unistatsinfo

notCourselnfo 2485 3884 167
Actual courselnfo 29 2443 262
unistatsinfo 6 85 239
Recall Precision F
notCourselnfo 0.380 0.986 0.549
courselnfo 0.894 0.381 0.534
unistatsinfo 0.724 0.358 0.479
Table 8c
private string[] courseKeyWords = { "study" };
private string[] unistatsKeyWords = { "average salary" };
Classified
notCourselnfo courselnfo unistatsinfo
notCourselnfo 2504 4007 25
Actual courselnfo 29 2677 28
unistatsinfo 6 87 237
Recall Precision F
notCourselnfo 0.383 0.986 0.552
courselnfo 0.979 0.395 0.563
unistatsinfo 0.718 0.817 0.765
Table 8d

Using an Any Keyword approach generally classified course information well, at least 0.89 recall in all
cases, with one reaching 0.97. Precision for non-course information was also notable, but low recall
reduced its F-measure. Reasonable success was also had identifying Unistats information, with each
model scoring over 0.7 for recall. The last model scored well for both recall and precision on Unistats
information, which is reflected in its F-measure. The difference in the precision from using “average
salary” to identify Unistats information versus “satisfied”, shows how key the selection of words for
use in the classifier is. Recall was broadly the same between these last two models, but precision
was 0.358 in the first compared with 0.817 in the second.

The Any Keyword approach does suffer from not being selective enough, scoring low for recall in
identifying pages that were not course information. The classifier’s preference was to classifying lots
of pages as course information when they were not. Recall for non-course information dropped
lower still when two words were included in the course information array (c.0.4 to 0.26). The criteria
for classification as course information were being too easily met. It’s also likely that much of the
success the classifier did have was due to the wide range of non-course information included in the



training data. Pages from outside the higher education domain would be much less likely to contain
words like “graduate” and “study”. In a production setting the model would only be used against
pages from within higher education, so non-course information pages from these sites would be
more difficult to pick out.

The keywords from table 8d were used to classify the test data, as these produce the best F scores
against the training data.

private string[] courseKeyWords = { "study" };
private string[] unistatsKeyWords = { "average salary" };
Classified
notCourselnfo courselnfo unistatsinfo
notCourselnfo 111 1094 0
Actual courselnfo 19 824 7
Recall Precision F
notCourselnfo 0.092 0.854 0.166
courselnfo 0.969 0.430 0.595

Table 9: Any Keyword classifier run against the test data

Expectations that the recall for non-course information was related to the contents of the training
data were correct. The test data only contains pages from universities, so whilst recall for classifying
course information was extremely high (0.969) non course information was very low at 0.092. The
classifier was assessing the vast majority of pages as course information. The percentage of course
information in the data is 41.3% and the classifier correctly identified 45.5% of instances, which is an
accuracy very close to that of mass labelling the data as course information. This classifier was not
sensitive enough to properly distinguish between the closely related pages of the test data.

Seven instances featured the string “average salary” and so were classified as Unistats information,
three pages from one institution and one from another. The group of three were classified more
than once, owing to a style of website not accounted for in the database design. Different URLs were
used to represent sections of the page that should be open to the user, so the source code was the
same between them. The sentences that triggered the classifications were a very small part of the
pages and I'm not sure if a machine learning classifier alone would be sensitive enough to pick the
same up. Calling these pages Unistats information is likely a stretch, but it does disprove my earlier
suspicion that no such information would be found. Although given the test data contains 2055
instances these seven instances represent only 0.3% of the data.

All Keyword

A simple modification to the Any Keyword classifier yielded an All Keyword classifier, where every
word in a keyword array would be required to gain classification. Again, a small range of keywords
was used to build the classifier against the training data, with the most successful at this stage also
being used with the test data.



private string[] courseKeyWords = { "course", "study" };
private string[] unistatsKeyWords =
{ "satisfied", "average salary" };

Classified
notCourselnfo courselnfo unistatsinfo
notCourselnfo 3467 3049 20
Actual courselnfo 40 2682 12
unistatsinfo 6 104 220
Recall Precision F
notCourselnfo 0.530 0.987 0.690
courselnfo 0.981 0.460 0.626
unistatsinfo 0.667 0.873 0.756
Table 10a
private string[] courseKeyWords = { "course", "study", "graduate" };
private string[] unistatsKeyWords = { "satisfied" };
Classified
notCourselnfo courselnfo unistatsinfo
notCourseinfo 3898 2471 167
Actual courselnfo 45 2427 262
unistatsinfo 90 1 239
Recall Precision F
notCourselnfo 0.596 0.967 0.738
courselnfo 0.888 0.495 0.636
unistatsinfo 0.724 0.358 0.479
Table 10b
private string[] courseKeyWords = { "course", "study" };

private string[] unistatsKeyWords = { "satisfied" };



Classified
notCourselnfo courselnfo unistatsinfo

notCourselnfo 3444 2925 167
Actual courselnfo 40 2432 262
unistatsinfo 6 85 239
Recall Precision F
notCourselnfo 0.527 0.987 0.687
courselnfo 0.890 0.447 0.595
unistatsinfo 0.724 0.358 0.479

Table 10c

By definition, the All Keyword classifier becomes more selective as words are added to the keyword
arrays; this allowed it to exclude non-course information better than the Any Keyword classifier.
Common to all of the All Keyword classifiers was high recall and low precision for course information
and high precision with low recall for non-course information; showing that whilst this classified
improved on the Any Keyword approach, it still allowed a lot of non-course information to be
classified as course information. The keywords from table 10a produced the most consistent F
scores, so these words were used to test the classifier with the test data.

private string[] courseKeyWords = { "course", "study" };
private string[] unistatsKeyWords =
{ "satisfied", "average salary" };

Classified
notCourselnfo courselnfo unistatsinfo
notCourselnfo 373 832 0
Actual

courselnfo 20 824 6

Recall Precision F

notCourselnfo 0.310 0.949 0.467

courselnfo 0.969 0.498 0.658

Table 11: Results from the All Keyword classifier using the test data.

Despite more success with non-course information versus Any Keyword, All Keyword’s recall
dropped 0.22 against the test data. As was the case with Any Keyword, this is likely due to the more
challenging make-up of the non-course information in the test data. Six course information pages
were classified as Unistats information, these were the same repeated three pages from the Any
Keyword classifier.



Supervised Machine Learning Classifiers

The GUI provided with the Weka framework allowed testing of different machine learning
algorithms. Guided by Witten et al.’s book several algorithms were created using the same training
data as the native C# classifiers, these were then also assessed against the test data. All of the
models were built and validated using 10 fold cross validation.

Results for the Weka built models feature three fewer instances than the native C# classifiers, an
error in the way Weka connected to the database storing the training data meant that not all
instances were returned. Weka not only generates an accuracy rate for correctly classified instances,
but also a confusion matrix and statistics like recall and precision.

Problem Representation

In this project the data is stored in a central database for each web page, the content of each page is
one single text string. A separate executable to that of the bot described earlier requests an amount
unclassified work from the database. The database sends this work to the classifier executable
through the web API. Again, this means that the classifier can be hosted on another machine
specialised to the task if required. The work is an array of objects representing the previously
scraped web pages. Each object has a “content” property, which is a single text string containing the
human readable text from the web page. The process by which this text string is arrived at, is
described earlier in the “Example Web Scrape” section and a real world example is given in Appendix
B.

L Classifier 1
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5. Send
Content

\

—— HTTP
1.Request Work 3. Send Work

Web API

'\

1. Request 3.Send 5. Send
Work Work Content

l

—— ODBC

2. spGetUnclassifiedWork
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Figure 10: Data flow between the classifier and database.

A single text string cannot be used in a SML method and expected to produce a usable result. This is
because the SML method does not read text, it expects groups of numerical values that can be
operated on. In order to train a classifier, we must first represent the data (or problem) in a way that
it can understand. The Weka framework uses a concept of vectorization, which can turn the content
of a text document into a collection of numbers. Producing one vector (collection of numbers) for
each document in a dataset is seen as passing the documents through a filter. There are many filters
in the Weka framework, the StringToWordVector filter takes input of one or more documents (each
in one string) and produces a collection of vectors that represent all of them. All of the vectors from
a group of documents passed simultaneously through the filter will have the same word elements,
even if not every document features every word.

Document ID Document Class dog cat cow pig
1 A 1 0 1 0
2 B 1 1 1 1
n A 0 0 1 0

Table 12: Example representation of document vectors, one and zero represent presence or absence of the word in
the document.

Conceptually a group of vectors is similar to a table of information, where the left hand column is a
unique ID for each document and subsequent columns each represent a word. If the document
contains the word, then a non-zero numerical value will exist in the cell where the document’s row
and the word’s column intersect. One final column is used to represent the documents class, in
labelled data this has a value and in unlabelled data it is empty. The classifier’s purpose is to
compare the vectors it saw in training with those in unlabelled data and fill in the empty class
column. Choosing a large enough vector size (number of words to keep) to allow all the documents
in a dataset to be represented is key. In this project, 1000 words were used to make the vectors as
this would give good coverage for the size of document without making the vectors too large to
process easily. The 1000 words making up a vector were those that were the most popular across
the document(s) going through the filter at that time. What numerical value is used in the vectors is
selected whilst tuning the filter.

When working with documents of varying lengths it’s clear that simple frequencies of words might
not represent a documents class well. A very long document could mention a the word “dog” ten
times but not actually be about dogs, whereas a short poem specifically about dogs could use the
word only two or three times. A similar issue arises when considering words that are mentioned in
very few of the documents making up a collection. In this project mentioning the word KIS would
likely indicate some information relating to Unistats or display of the appropriate information.
Applying the correct weight to words in both of these situations is addressed using a technique
known as TF-IDF. TF stands for Term Frequency and IDF is Inverse Document Frequency, they deal
with the issues in the order presented. In the long text featuring “dog” ten times, the TF for “dog”
will be lower than the short poem featuring the word two or three times. TF is a simple measure of
how frequently each word appears in a document. If only a handful of pages feature “KIS” in all our



training data then “KIS” then the IDF for “KIS” will be high. IDF is a measure of how many of the
documents in a collection contain a particular word. In this project the TF-IDF was used as the
measure for words in a vector. The TF-IDF is the TF and IDF for a word multiplied together.

Number of times a word appears in the document

TF =
Total number of words in the document
IDF =1 ( Total number of documents )
=1n - p
Number of documents with the word in
TFIDF = TF - IDF
n: QueryResult-weka filters.unsupervised.attribute. StringToWordVe ctor-R 1-W1000-prune-rate-1.0-T-I-N1-L-stemmerweka.core.stemmers. er handlerweka.core.stop A
266: eligible 267: email 268: employability 269: employers 270: employment 271: end 272: energy 273: engage 274: engagement 275: engineering 276: england 277: english 278: enough 21
Numeric  Numeric Numeric Numeric Numeric Numeric  Numeric Numeric Numeric Numeric Numeric Numeric Numeric
0.0 0552273 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.209402 0.0 0.0 0.0
0.0 0552663 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0552743 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0553519 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0842003 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.211465 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0554374 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2132 00 0843303 0.0
0.0 0554369 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0843295 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.213396 0.0 0.0 0.0
0.0 0554481 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.213435 00  0.843466 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0554823 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.214184 0.0 0.843987 0.0
0.0 0555038 0.0 0.0 1.213586 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.214771 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.215157 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.449244 0.0 0.0 0.0 0.0 0.0 0.0 1563818 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.845531 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0555928 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.216602 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.216666 0.0 0.0 0.0
0.0 0556084 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.564382 0.0 0.0 0.0 0.0
0.0 0.0 1.115958 1.453121 1.217806 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.5571 0.0 0.0 0.0 0.0 0.0 0.0 1.56527 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.219504 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.848076 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.848076 0.0
0.0 0557528 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0557579 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.220214 0.0 0.0 0.0
0.0 0557586 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.84819 0.0
0.0 0557661 1.117345 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.220442 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0557805 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0558247 0.0 0.0 0.0 0.0 0.0 0.0 1.568492 0.0 15716 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0558387 1.118799 1.456821 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1717897 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0558855 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 13: Excerpt from the group of vectors produced by the training data.

In table 13 you can see an example of the sort of data produced by vectorising actual web pages. The
excerpt is showing the data for several web pages between elements 266 “eligible” and 278
“enough”. The numbers are the IF-TDF calculated for the word in the context of that document. The

I”

lower values of “email” suggest it is mentioned infrequently on individual pages but is featured on

lots of them (this small excerpt shows around 20 pages featuring “email”). “Engagement” has

|II

around three times the score of “email”, suggesting it is mentioned in fewer of the pages and

perhaps more often in individual pages when it is used.



The StringToWordVector filter also allows the user to specify treatment of stop words and how to
tokenize words. Stop words are common words that don’t help convey the message of text, like
“and”, “the” or “as”. Stop words also tend to be very common, so easily end up consuming space in
a document vector as well as not adding information relating to the document’s class. In this project,
data did not have stop words removed, it may have been investigated if models were not working. A
tokenizer’s job is to split the text into pieces referred to as tokens that then make up the each
vector. An alphabetic tokenizer will ignore any words containing non-alphabetic characters. Use of
the alphabetic tokenizer was particularly useful with this project’s data, because it added a second
chance to remove HTML tags not handled by the bot.

weka filters.unsupervised.attribute.StringToWordVector
About

Converts String attributes into a set of attributes representing More
word occurrence (depending on the tokenizer) information from

the text contained in the strings. Capabilities

<«

IDFTransform | True

&)

TFTransform | True

attributelndices  first-last
attributeNamePrefix

debug {False E]

dictionaryFileToSaveTo -- setme --

<«

doNotCheckCapabilities {False

doNotOperateOnPerClassBasis {True

4 (=

invertSelection | False

-

lowerCaseTokens | True

minTermFreq 1

<

normalizeDocLength {Normalize all data

=

outputWordCounts {False

periodicPruning  -1.0

saveDictionaryinBinaryForm LFaIse ﬂ

stemmer | Choose |NullStemmer
stopwordsHandler Choose | Null
tokenizer | Choose |AlphabeticTokenizer

wordsToKeep 1000

L Open... J L Save... | [ OK | | Cancel J

Figure 11: Settings from the StringToWordFilter.



Every piece of data from the training and testing datasets, as well as any future unseen data, was
given the treatment described above. This allowed consistent representation of the problem
between algorithms and datasets. Feeding data that had not been alphabetically tokenized into a
classifier not built with similar data would produce incorrect results. An obvious issue arises with
using new data in a classifier built with a particular structure of document vector. The 1000 words
chosen from a training dataset are unlikely to be the same 1000 words used in a vector created from
unseen data. To help with this, Weka provides an intermediate class that will map between vectors
and allow tokens not present in both the classifier and unseen data to be ignored. This is another
reason to try and use a vector size that is relatively large, to allow a good chance that unseen data
can also be represented in the tokens the classifier is used to dealing with. As the variability of the
text domain increases then the size of vector may also need to increase to allow for this.

Naive Bayes

Correctly Classified Instances 8227 85.7247 %
Incorrectly Classified Instances 1370 14.2753 %
Precision Recall F-Measure Class

0.948 0.850 0.896 notCourselInfo

0.749 0.880 0.809 courselnfo

0.508 0.815 0.626 unistatsInfo

=== Confusion Matrix ===

a b c <-- classified as
5551 771 211 | a = notCourselnfo
277 2407 50 | b = courselInfo

26 35 269 | c = unistatsInfo

Table 13: Results from a Naive Bayes classifier against the training data.

Accuracy from the training data for a Naive Bayes classifier was clearly higher than that achieved
through the native C# classifiers, with an accuracy of 85.7%. Aside from the higher accuracy and
recall, the striking thing about use of this classifier is its consistently high recall for each class, with all
being over 0.8. Precision was very high for non-course information, the combination of good
precision and recall show a clear improvement for this class over the C# classifiers. Precision of
Unistats information was low though, 0.508 meaning that almost half the pages identified as
containing Unistats information did not. The F-measure scores across the classes were promising,
although some improvement to the performance of Unistats classification would be desirable.

Correctly Classified Instances 1672 81.5212 %
Incorrectly Classified Instances 379 18.4788 %
Precision Recall F-Measure Class

0.828 0.864 0.846 notCourselInfo

0.797 0.747 0.771 courselnfo

=== Confusion Matrix ===



a b c <-- classified as
1038 1061 3 a = notCourselnfo
215 0634 0 | b = courselInfo
0 0 0 | c = unistatsInfo

Table 14: Results from test data when classified using the Naive Bayes model

Against the test data this classifier marginally improved recall of non-course information and
reduced recall in identifying course information, the opposite effect was seen for precision. These
changes did reduce the F-measure for both classes, although not too dramatically. Despite the
reduction in F-measure for both classes, overall accuracy dropped only 4.2%, from 85.7% to 81.5%.
Three pages were identified as Unistats information but on closer inspection these were examples
where the scraping bot had failed and saved an error string as the page contents.

Nearest Neighbour (k = 1)

“k” is the variable used in Weka when describing the number of neighbours used to arrive at a
classification for the unlabelled data; hence this type of classifier in Weka is known as IBk, where k
can be controlled by the user. For this classifier | chose a k value of one, meaning that once the
nearest neighbour is found, its own classification is assigned to the unlabelled data. When k is larger
than one and nearest neighbours have different classes then the algorithm must decide between
them; when k is larger than one, it should be set to a value that allows ties to be broken.

Correctly Classified Instances 8581 89.4134 %
Incorrectly Classified Instances 1016 10.5866 %
Precision Recall F-Measure Class

0.927 0.928 0.928 notCourselInfo

0.851 0.854 0.852 courselnfo

0.581 0.555 0.567 unistatsInfo

=== Confusion Matrix ===

a b c <-- classified as
6063 367 103 | a = notCourselInfo
370 2335 29 | b = courselInfo
104 43 183 | c = unistatsInfo

Table 15: Results from a Nearest Neighbour classifier, using k = 1.

Nearest Neighbour produced the highest overall accuracy seen so far with the training data at
89.4%. Precision and recall for the classifier show a very high accuracy at identifying non-course
information and high accuracy for course information, but its ability to identify Unistats information
was low. Looking at the confusion matrix it can be seen that the false negatives related to Unistats
information were split in a roughly 2:1 ratio between not-course information and course
information. Whilst no particular effort has been made to identify to the model that Unistats
information can be considered a subset of course information, it is concerning that so many pages
taken directly from the existing Unistats site could be classified in this way. F-measures were better
for course and non-course information compared to Naive Bayes, but the nearest neighbour
approach did struggle a little more to identify Unistats information.

\

Correctly Classified Instances 1564 76.2555 %



Incorrectly Classified Instances 487 23.7445 %

Precision Recall F-Measure Class
0.722 0.967 0.827 notCourselnfo
0.910 0.473 0.623 courselnfo

=== Confusion Matrix ===

a b c <-- classified as
1162 40 0 | a = notCourselInfo
447 402 0 | b = courselInfo
0 0 0 c = unistatsInfo

Table 16: Results from Nearest Neighbour (k = 1) when classifying the test data

A 13% drop in accuracy when using the test data may suggest some overfitting with this method.
Recall shows that the success for identifying course information dropped below 0.5, although a high
precision does mean that when a page was classified as course information then this was generally
correct. The reduction in recall reduced the F-measure for course information to lower than that of
Naive Bayes.

With this data, Nearest Neighbour (k = 1) is less accurate than Naive Bayes but also loses its “lazy”
advantage, as every page the bot encounters will need to be classified. Spending time training a
model that can classify quickly will be an advantage over each instance taking more time, especially
with a classifier like Naive Bayes taking under ten seconds to construct against the current training
data.

Nearest Neighbour (k = 4)

A Nearest Neighbour classifier using four neighbours was also created, with the hope that this would
increase performance; four neighbours were used to allow ties between the three classes to be

broken.

Correctly Classified Instances 8825 91.9558 %
Incorrectly Classified Instances 772 8.0442 %
Precision Recall F-Measure Class

0.936 0.956 0.946 notCourselnfo

0.903 0.880 0.891 courselnfo

0.659 0.521 0.582 unistatsInfo

=== Confusion Matrix ===

a b c <-- classified as
6246 218 69 | a = notCourselnfo
307 2407 20 | b = courselInfo
117 41 172 | c = unistatsInfo

Table 17: Training results for Nearest Neighbour (k = 4)

This Nearest Neighbour classifier improved slightly on the overall accuracy compared to the one
neighbour version. General performance as measured by F-score increased slightly for course and



non-course information but dropped for Unistats, which is unfortunate as this was already the worst
performing class.

Correctly Classified Instances 1587 77.3769 %
Incorrectly Classified Instances 464 22.6231 %
Precision Recall F-Measure Class

0.756 0.906 0.824 notCourseInfo

0.815 0.587 0.682 courselnfo

=== Confusion Matrix ===

a b c <-- classified as
1089 113 0 | a = notCourselnfo
351 498 0 | b = courselInfo
0 0 0 | c = unistatsInfo

Table 18: Nearest Neighbour (k = 4) results against the test data

Using four neighbours produced a similar drop in accuracy between training and test, dropping 14%
compared to 13% with one neighbour; although this classifier was still more accurate against the
test data compared to using one neighbour. Course information recall was 0.587, which is an
improvement over the one neighbour algorithm; recall of non-course information was slightly
reduced. Overall this algorithm fared slightly better than one neighbour, which is intuitive as it was
consulting with more neighbours.

Random Tree

The Random Tree classifier in Weka can have the number of available attributes set manually or
selected by default. The default selection chooses log2(#predictors) + 1, in this case I'm taking
#predictors to be the total number of attributes. “k” is again used in Weka’s implementation, but
this time to represent the number of attributes to inspect; with 1000 words in each instance’s
vector, the number inspected at each node is 11.

Correctly Classified Instances 8388 87.4023 %
Incorrectly Classified Instances 1209 12.5977 %
Precision Recall F-Measure Class

0.913 0.914 0.913 notCourselnfo

0.819 0.820 0.819 courselnfo

0.555 0.536 0.545 unistatsInfo

=== Confusion Matrix ===

a b c <-- classified as
5970 452 111 | a = notCourselInfo
462 2241 31 | b = courselInfo
109 44 177 | c = unistatsInfo

Table 19: Results from training the random tree classifier against the training data.

Overall accuracy was again higher in this classifier than any seen in the native C# approach. Similar
to Nearest Neighbour, Random Tree also showed strong performance in recall and precision for non-



course information and course information classes, but dropped

information.

Correctly Classified Instances 1102

Incorrectly Classified Instances 949

Precision Recall F-Measure Class

0.569 0.897 0.696 notCourselInfo
0.189 0.028 0.049 courselnfo

=== Confusion Matrix ===

a b c <-- classified as
1078 103 21 | a = notCourselnfo
816 24 9 | b = courselInfo
0 0 0 | c = unistatsInfo

Table 20: Results from the Random Tree classifier against the test data.

off when identifying Unistats
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Performance against the test data dropped well below that of the other Weka classifiers discussed
so far; | suspect severe over fitting, given the reduction in accuracy from 87.4% to 53.7%. Recall,

precision and the confusion matrix show that this classifier heavily favoured assigning the class of

non-course information to pages, resulting in the lowest recall and precision rates for course

information yet of 0.028 and 0.189. Given the very low success at identifying course information, the

Unistats classifications were ignored.

Given the stronger performance of the other classifiers in their initial states, pruning was not

undertaken; if this classifier had already been a strong contender then time would have been used

to prune during a refinement stage.

Random Forest

A Random Forest of 100 Random Trees was constructed in Weka using the training data.

Correctly Classified Instances 8827
Incorrectly Classified Instances 770
Precision Recall F-Measure Class

0.938 0.957 0.947 notCourselnfo
0.902 0.877 0.889 courselnfo
0.657 0.533 0.589 unistatsInfo

=== Confusion Matrix ===

a b c <-- classified as
6253 215 65 | a = notCourselInfo
309 2398 27 | b = courselnfo
107 47 176 | c = unistatsInfo

Table 21: Results of a Random Forest classifier built using the training data

91.9767
8.0233 %

o
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Training results for Random Forest were similar to those of a single Random Tree in overall accuracy,
the precision of course information and Unistats information was improved. Recall for Unistats
information still remained low at 0.533.

Correctly Classified Instances 1202 58.6056 %
Incorrectly Classified Instances 849 41.3944 %
Precision Recall F-Measure Class

0.586 1.000 0.739 notCourselnfo

0.000 0.000 0.000 courselnfo

=== Confusion Matrix ===

a b c <-- classified as
1202 0 0 | a = notCourselnfo
849 0 0 | b = courselInfo
0 0 0 | c = unistatsInfo

Table 22: Random Forest Classifier on the test data

This Random Forest classifier suffers from extreme over fitting, to the point that every instance was
classified as not course information. With the overfitting of both this classifier and the individual
random tree, | suspect pruning would be vital to properly use these classifiers in production.

Support Vector Machine

In Weka a support vector machine is known by the acronym SMO, the following are results from
training and cross validating an SMO classifier on the training data.

Correctly Classified Instances 8840 92.1121 %
Incorrectly Classified Instances 757 7.8879 %
Precision Recall F-Measure Class

0.948 0.947 0.947 notCourselInfo

0.899 0.884 0.891 courselnfo

0.623 0.727 0.671 unistatsInfo

=== Confusion Matrix ===

a b c <-- classified as
6184 238 111 | a = notCourselInfo
284 2416 34 | b = courselInfo

56 34 240 | c = unistatsInfo

Table 23: Results from an SMO classifier against training data.

As with many of the other machine learning classifiers, the SMO produced highly favourable
statistics for non-course information during training, with very good performance also found in
classifying course information. The F-measure for Unistats information was the highest compared to
the other machine learning classifiers discussed, but still a little lower than would be wanted in a
final model.

Correctly Classified Instances 1536 74.890
Incorrectly Classified Instances 515 25.109
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Precision Recall F-Measure Class
0.725 0.921 0.811 notCourselnfo
0.820 0.505 0.625 courselnfo

=== Confusion Matrix ===

a b c <-- classified as
1107 94 1 a = notCourselInfo
420 429 0 | b = courselInfo
0 0 0 | c = unistatsInfo

Table 24: Results from SMO classifier against test data.

The SMO classifier saw a drop in accuracy against the training data similar to that of all the other
machine learning classifiers, with the exception of Naive Bayes. Recall for course information
dropped significantly to 0.505, reducing F-measure for the class with it. F-measures for both classes
in the test data showed the SMO to be very similar in performance to a k=1 nearest neighbour
approach.

First Stage Selection of a Classifier

Having tested basic implementations of different native C# and Weka algorithms, a decision on
narrowing the scope classifiers being used was required. From the training and testing data | decided
that Naive Bayes had been the most successful based on accuracy and F-measures produced in
testing compared to training. All of the other Weka classifiers produced better results on the training
data but had a larger reduction in metrics against the testing data. A Naive Bayes approach gave a
lower initial accuracy in training but was then more consistent on the previously unseen data; | value
this characteristic highly as it reduces the requirement for training data and unseen data to be alike.
Variability is inherent in the domain that the classifier will be operating in, so producing strong
results on test data suggests it will also be able to cope in a production setting with unlabelled data.
Because of this reason | chose to investigate refining the Naive Bayes classifier further.

Second Stage Classifier Implementation

The Naive Bayes classifier implemented in stage one showed a good level of performance, but also
had room for improvement; particularly around identifying Unistats data. The second stage of
implementation briefly explored changes in training data that could lead to improved performance.

Naive Bayes Using Cleaned Training Data

As mentioned previously, the training data contained information drawn from pages outside of the
sector. In this attempt at refinement, the out of sector pages were removed from the training data.
This was to test the effect of the noise caused by out of sector websites in the data. The subset was
used to train a Naive Bayes classifier to make a distinction between course information and non-
course information. Unistats itself was excluded from this data, in favour of possibly using some
other mechanism to indicate possible Unistats information (discussed later).



Correctly Classified Instances 6402 89.9536 %
Incorrectly Classified Instances 715 10.0464 %
Precision Recall F-Measure Class

0.933 0.901 0.917 notCourselnfo

0.850 0.896 0.873 courselnfo

=== Confusion Matrix ===

a b <-- classified as
3951 432 | a = notCourselInfo
283 2451 | b = courselInfo

Table 25: Results from a Niave Bayes classifier, trained using only institutional web pages.

When trained using data without non-sector websites, the Naive Bayes approach produced a higher
overall accuracy of 89.9% versus 85.7% of the original classifier. Both classes had individual recalls
very near to 0.9.

Correctly Classified Instances 1651 80.4973 %
Incorrectly Classified Instances 400 19.5027 %
Precision Recall F-Measure Class

0.819 0.856 0.837 notCourselInfo

0.783 0.733 0.757 courselnfo

=== Confusion Matrix ===

a b <-- classified as
1028 173 | a = notCourselInfo
227 623 | b = courselInfo

Table 26: Results from the Naive Bayes classifier against the original test data

Surprisingly, this new Naive Bayes classifier was slightly less accurate against the same test data. The
F-measure for both classes were also slightly reduced. These drops in metrics suggest that the non-
sector web sites might help with avoiding over fitting. From this result, it would appear that the
Naive Bayes previously created is a better fit for production use.

Expectation Maximisation Clustering and Naive Bayes

Witten et al. discuss the use of EM (Expectation Maximisation) clustering in combination with a
Naive Bayes classifier, as a potential solution to the common problem of lacking unlabelled data to
build models from. Until this point, all the labelling on the model and test data that has been used in
the project has been conducted based on the page’s URL. If there is a natural distinction between
the content of course information and non-course information pages, a clustering algorithm should
be able to partition the two. Creating a Naive Bayes model from data labelled according to EM
clustering would allow me to also see if my previous automated labelling had caused an impact. If |
had misunderstood the structure of the websites contributing to the model then many more non-
course information pages could have been wrongly classified than | expected, causing inaccuracies in
the model; EM clustering would offer a view on class based purely on the content of each page.
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Incorrectly clustered instances : 1060.0 14.8939 %

Table 27: Accuracy of EM clustering on the reduced training data.



Using the reduced training data as described in the previous Naive Bayes model, the EM clustering
algorithm disagreed with the URL based classifications 14.9% of the time. The total size of the
training data is 7117 instances, so 1060 disagreements is not insignificant but | would expect the
models to be comparable in performance. The labelled data created from the EM clustering was
used to train a Naive Bayes classifier, which was also run against the standard test data.

Correctly Classified Instances 1636 79.766 %
Incorrectly Classified Instances 415 20.234 %

Table 28: Results from a Naive Bayes classifier, trained using data labelled through EM clustering.

An overall accuracy of 79.8% suggests that any impact caused through disagreements between EM
clustering and URL based labelling did not have a large affect, although this comparison is using test
data labelled using the latter method. | would expect the URL based model to fair better than the
EM clustered one, it performing very similarly suggests both methods produce workable models. |
was intrigued as to whether the performance would hold or be switched if the test data was also
labelled through EM clustering rather than URLs, so ran the EM clustering algorithm on the test data.

X

Incorrectly clustered instances : 976.0 47.5865 %

Table 29: Results from the EM clustering applied to the test data

Unfortunately the EM clustering and URL labelling approach disagreed 47.6% of the time, perhaps
the reduced number of instances (c.2000) and only having four different universities made it difficult
for the clustering to spot the difference between course information and not. Because of this large
disagreement | did not continue to test this refinement of Naive Bayes against this test data.



Summary

Method and Results

In keeping with the “no free lunch” theorem, a range of text classifiers have been built and tested.
Their purpose was to aid in the identification of course information on university websites, in
particular course information that may meet Key Information Set (KIS) standards. KIS information is
currently displayed in the Unistats website, but this is likely to change in the near future. The timing
of the project meant that changes to regulation around KIS and Unistats were not completely
finalised, or implemented by universities. This meant the training data for classifiers had to use
Unistats itself to learn what KIS data could look like. The main disadvantage of this was Unistats
being only one example of how to present the data to a reader. In time, each University will have
slightly different wordings and expressions, as they do on their current course information pages. To
more closely represent the classifier’s production environment, the test data only contained
information from university websites and not Unistats. All of the training and test data was
automatically labelled using inspection of root URLs.

Training Test
Classifier Accuracy Average F Accuracy Average F
Random 30.6% 0.259 - -
Random Proportional 54.9% 0.325 48.1% 0.450
Any Key Word 69.3% 0.627 53.5% 0.381
All Key Word 72.6% 0.691 63.9% 0.523
Naive Bayes 85.7% 0.777 81.5% 0.809
Nearest Neighbour (k=1) 89.4% 0.782 76.3% 0.725
Nearest Neighbour (k=4) 91.6% 0.806 77.4% 0.753
Random Tree 87.4% 0.759 53.7% 0.373
Random Forest 92.0% 0.808 58.6% 0.370
Support Vector Machine 92.0% 0.836 74.9% 0.718
Naive Bayes (Cleaned Data) 89.6% 0.895 80.5% 0.797

Table 30: Summary results from the constructed classifiers.

Initially, classifiers based on purely random chance were created, this offered a baseline
performance against the data. Any subsequent classifier would have to outperform these by a clear
margin to be worth considering. Before using machine learning techniques, basic classifiers built on
native C# string functions were created. This gave a baseline of performance achievable by any
programmer who is not familiar with machine learning methods. In both of these native classifiers,
performance was easily tuned to training data but suffered in testing. Such a difference is
representative of a main challenge in this project, which is the variability between text different
universities use on their websites.



Despite difficulties in the data, several machine learning classifiers were created that performed well
in both training and testing. The two tree based approaches were clearly over fitted to the training
data. It is likely they could be built and used for this classification task but time, inexperience and
other better performing classifiers meant pruning activities were not undertaken. Aside from the
tree based algorithms, all the machine learning classifiers out performed random selection and
simple rule based approaches.

A Naive Bayes classifier was chosen from the classifiers as being most likely to offer the best
performance in the final application. This decision was based on having the strongest performance in
the F-measure metric, whilst also having the lowest drop in performance from training to testing.
Two methods were briefly explored to increase performance of the classifier by adjusting the
training data. The first was to remove data from outside the higher education sector from the
training data. This was initially included before the context of project had been fully decided and
could have added unnecessary noise to the classifier. Removing the non-sector data did not increase
the performance however. Finally an attempt was made to build and test a Naive Bayes classifier
with data labelled through a clustering method. The idea was to remove false labels in the original
training data caused by the automatic labelling method. This approach produced workable clusters
for the training data, but not the test data. Because of this it would have been impossible to test any
classifier made from the training data.

Potential Benefits

The initially created Naive Bayes classifier would likely be of a good enough quality to use in
production, especially when Universities become more explicit with display of KIS data featuring
words currently used on Unistats. There are two examples | can offer for how the classifier can
reduce manual workload, the first is from identifying Unistats data in training. 530 pages were
identified during training as Unistats information, of which roughly half were correct. Assuming a
person inspecting the same web pages would correctly identify all course information, there were
3064 pages of potential Unistats information. There were 330 actual Unistats pages, which are the
closest approximation to how a University might display the information. Unistats pages made up
roughly 11% of all the course information. Use of the classifier to identify Unistats information would
reduce the manual search space to the 530 pages labelled as such. This means that if a person was
required to manually inspect some of these pages, they would find Unistats information in every
other page rather than every tenth page.

The second example is from identifying only course information in the test data. With the number of
higher education providers subject to KIS regulations increasing, many new providers of varying size
and complexity are going to be encountered. It is likely that at least some of the providers new to
HEFCE and KIS will not structure their websites in a common way, both in URLs and the prominence
of their course information. Even discounting any capability to identify Unistats information on
webpages, having a classifier able to reliably identify course information would save manual effort.
All that is required is for the domain of the provider to be identified and the web bot described
earlier will be able to crawl the domain finding and prioritising course information. This would be
simple for a human but, as mentioned in the context section, quickly scales beyond a reasonable
task and also may need to be performed again at short notice. A bot can be run at all hours of the



day, storing the information it finds in a database ready to be inspected by the analysts at HEFCE.
The Naive Bayes classifier initially developed had a precision suggesting up to 80% of the pages
collected and classified as course information would be correct. A human would likely achieve a
higher precision, but their time would be more expensive and motivation likely to fade with such a
task.

Project Issues

A personal preference of mine is to use large projects to forward my understanding in an area that
was previously unknown to me. This project was my first time studying machine learning, which has
meant decisions made earlier in the project | have sometimes later thought incorrect. In many cases
these did not seem to detract from the impact that the project could have. However, | do feel like
the project has been a starting point on solving the particular issue, rather than a comprehensive
answer. This is unsurprising now that | understand how vast machine learning is.

In particular, | feel the success of the Naive Bayes classifier is partly due to its robustness against
issues that | may have inadvertently introduced. For instance, the data used a TF-IDF weighting so
was on some level a measure of frequency. Reflecting later on Naive Bayes, in order to expand areas
of this report, | now realise | should have explicitly selected a Naive Bayes classifier meant for use
with data containing frequency values. According to Witten et al., | should have selected a
multinomial Naive Bayes implementation. In this case the classifier created is still usable, so either:
the standard Naive Bayes implementation in Weka is intelligent enough to cope with the mistake,
and self-select a multinomial approach; or, the non-zero TF-IDF weights were simply treated as 1 and
therefore True with a Boolean approach. Regardless, this example highlights the risk of using
someone else’s implementation of any algorithm. There are benefits to be had in saving time to
implementation, but without writing similar yourself it can be difficult to fully understand what has
been created. Keeping this in mind, it is not unlikely that some of the other classifiers tested would
be much more successful once | have more experience in the field; the failure of the Tree based
algorithms, for example.

Generally | believe the data collected was of a high enough quality for the task, but with more
understanding of the algorithms | might have treated it differently between implementations. With
the claimed strengths of an SVM in highly dimensional problems for instance, | might have recreated
the vectors to offer a much higher word count. As it happened, | settled on an approach of not
changing the treatment of the training data, in order to gain experience and knowledge of all the
classifiers | managed to test. To experiment with the data processing for each algorithm would have
been an overwhelming task for my first machine learning project.

Future Development

Decorated Naive Bayes Classifier

In order to classify pages as holding data, the previously described Naive Bayes classifier will be
reliant on universities displaying information in a wording similar to that of Unistats. It would be



better not to rely on this occurring, particularly in the early implementation of new regulations when
universities may change their sites incrementally. To account for this, | would recommend
decorating the Naive Bayes classifier with a simple C# classifier. Decoration is the programming
principal of wrapping one object in another to perform some intermediate task. In this case
intercepting the classification and change a course information class to Unistats based on some rule.
In the decorated Naive Bayes classifier, each instance given the class “courselnfo” would be
inspected again by a simple key word classifier. The key word classifier would change the
“courselnfo” class if a key word or several key words were found. This approach increases the
chance of identifying pages displaying a little, but not complete KIS data. It also mimics the reality of
these classes more accurately, in that Unistats information is a class within course information.
Whilst the keyword classifiers did not have high overall performance, the highest F-measures for
identifying Unistats information were achieved with the Any and All Keyword classifiers. Naive Bayes
has proved itself very good at differentiating course and non-course information, so that power
should also be utilised. Using a simple classifier to supplement the more complex one would allow
an operator of the production system to easily adjust the words that indicate potential Unistats
information. This is a benefit because it combines two separately powerful approaches and because
the project is happening at time of regulatory change. It was originally thought that the final
requirements for data display would be clear during the project, but they were not. As the data on
websites changes and is recollected then an analyst could easily change the key words and search
for new display of KIS data. The design of the data collection system also allows reclassification to
happen without explicitly recollecting the data, so an iterative process could be used on each
collection to produce a list of sites worthy for human investigation. Once the first few universities
were found to be correctly displaying the new data, these could be used to redevelop the Naive
Bayes classifier and remove the simple keyword search.

General System Development

In order to use the data collection system, the operator must currently run SQL queries on the
central database to set behaviour like domains to crawl and 24 hour page limits. They also have to
adjust source code if they want to change the amount of work requested by either the web scraping
bots or the classifier. Given the system’s existing web API and database backend, adding a graphical
user interface (GUI) would be feasible. A simple web application could be built to communicate with
the database through the web API. The database would store a table of system settings that could
be adjusted through the web application. Bots would operate on a separate machine, which
administrators would have access to in order to troubleshoot issues; Selenium does tend to leave a
browser open when a connection is dropped. The GUI would become another part of the system
that could be distributed and hosted from an appropriate machine in the network, but available to
all internal users with the right authorisation.

University websites are potentially very large, with several observed in the project featuring
expansive news and staff sections. | believe the system in its current configuration would eventually
find and stick to course information, but there is certainly potential for it to become stuck in other
highly connected areas of a website for some time. This issue occurred during testing the web
scraping bot with the final classifier and was mainly related to starting the bot at the university’s
homepage. From this point if the bot found its way to a news section, for instance, it would quickly



amass a large amount of links to other news articles and have no or very few links to course pages. It
was simple to counter this effect by starting the bot on a course information page or an “A-Z” course
search. The latter is, by definition, highly linked to course information pages. For an example based
on Lincoln University see appendix C. A production version of the scraping system could help this
issue by perhaps adding more variability to the way URLs are selected. Early in development | briefly
explored string similarity concepts like “fuzzy matching” and “Soundex”. If no course information has
been found yet, the production system could choose URLs with top levels that are statistically
distant from each other. This could help the bot select between different areas of website that
normally appear in the style of someUniversity.ac.uk/news/ or
someUniversity.ac.uk/courses/.
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Appendix A - Initial Rough Modelling

The following are some of the early hand drawn models used to clarify my approach and structure
the first coding explorations.
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Appendix B — Real Web Page Scraping

This page from the university of Birmingham is relatively simple, but the HTML code underneath is
still large and complex. It’s clear the bot doesn’t remove all of the extra information from the HTML
that it could do, but comparing the original source code for the page and what was stored in the
database shows the bot did a passable job.
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<html lang="en-gb">

<head>
<meta charset="utf-8"»
<title>
Introduction
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<script type="text/javascript">
//<! [CDATA[

if (typeof(window.$i) == 'undefined') { window.$j = $; }
window.$j.register = function(name) {if (!this._components){this._components = {};} this._components[name] = true;};
window.$j.isRegistered = function(name) { if (!this._components) { return false; } return !!(this._components[name]); };

window.$j.requires = function(name) { if (!this.isRegistered(name)) { alert('JQuery Extension " ' + name + '* not registered'); }};
1f (typeof(jQuery.fn.setArray) == 'undefined') { jQuery.fn.setArray = function{ elems ) { this.length = 8; jQuery.fn.push.apply(this, elems); return this; }};
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cscript type="text/javascript™>

/7<1[COATA[

var theForm = document.forms[ ' forml'];

if (ItheForm)
theForm = document.forml;

}

function _doPostBack(eventTarget, eventArgument) {
if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
theForm.__EVENTTARGET.value = eventTarget;
theForm.__EVENTARGUMENT.value = eventArgument;
theForm.submit();

}
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Sys.WebForms.PageRequestManager._initialize('ScriptManager’, 'forml', [1, [], [1, 98, "');
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</script>
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wF 775 aNeBap -7 2eE ec. " type=" (gxt;Jauasn pt*>e/scriptscnoscriptscp>Browser does not support script.

<div id="wrapper”>

e/divs
«div id="header_content">«div class="sys_textBoxWithRedirect">

<input name="GenericSiteAddSitespecificsearchl_redirectTextBox" type="text" value="Search...” id="GenericSiteAddSitespecificsearchl_redirectTextBox"
onkeypress="ContensisSubmitFromTextbox(event,&#39;GenericSiteAddSitespecificsearchl_redirectButton&#39;)" /><input type="submit"
name="GenericSiteAddSitespecificsearchl_redirectButton” value="Go" id="GenericSiteAddSitespecificsearchl_redirectButton” />
</divr</divs

The first 88 lines of HTML making up the page, the total number of lines is 274.
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staffFellowshipsFundingKnowledge PortalUseful linksContact ResearchPublicationsNewsEventsImpactCollaboration Introduction The Third
Sector Research Centre (TSRC) aims to enhance our knowledge of the sector through independent and critical research, giving us a better
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summaries and short ‘briefing papers’. Browse our research streams Building capacity TSRC is reviewing existing research and building
comprehensive databases to create lasting resources for third sector research. We are also working to grow the sector's potential to use
and conduct research, through collaborative research projects. Knowledge Portal: increasing access to research TSRC is committed to
helping people access research on the sector. Our Knowledge Portal enables people to search for and access a wide range of research from
a number of sources. Knowledge Portal @ Copyright 2010 by TSRC Privacy statement Terms of use <p>Browser does not support
script.</p></form>

The HTML after parsing by the bot, notice some HTML tags remain.



Appendix C — Bot Traversal Using Lincoln University

Lincoln University was used because it didn’t feature in the training or testing data of the project.
The website does also feature a common root for course pages, which helps the web scraping
system in its current configuration.

The web bot was started on a course information page and left to scrape around 50 pages before
the classifier began its work.

Address
http://www.lincoln.ac.uk/home/course/biobioub/
http://www.lincoln.ac.uk/course/bvsbvsum
http://www.lincoln.ac.uk/course/zoozooub

http://www.lincoln.ac.uk/home/campuslife/studentsupport/careersservice/
http://www.lincoln.ac.uk/course/eqsabwum
http://www.lincoln.ac.uk/course/biochmum
http://www.lincoln.ac.uk/home/contacts/
http://www.lincoln.ac.uk/home/webteam/
http://www.lincoln.ac.uk/home/minicom/
http://www.lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/
http://www.lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/howtoapply/
http://www.lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/feesandfunding/
http://www.lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/parentsguide/
http://www.lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/askaquestion/
http://www.lincoln.ac.uk/virtualopenday
http://www.lincoln.ac.uk/home/studyatlincoln/scholarships/
http://www.lincoln.ac.uk/home/studyatlincoln/partnerinstitutions/
http://www.lincoln.ac.uk/home/studyatlincoln/typesofcourses/
http://www.lincoln.ac.uk/home/research/
http://www.lincoln.ac.uk/home/course/biobioub/?d=2016-17
http://www.lincoln.ac.uk/home/course/biobioub/?d=2017-18
https://www.lincoln.ac.uk/howtoapply

http://www.lincoln.ac.uk/opendays

https://www.lincoln.ac.uk/virtualopenday

http://www.lincoln.ac.uk/2ak/schoolstaff
http://www.lincoln.ac.uk/course/eqsabwub
http://www.lincoln.ac.uk/home/studyatlincoln/shortcourses/
http://www.lincoln.ac.uk/home/accessibility/
http://www.lincoln.ac.uk/course/zoozooum
http://www.lincoln.ac.uk/home/studyatlincoln/
http://www.lincoln.ac.uk/course/biochmum?d=2016-17



http://www.lincoln.ac.uk/course/BUSIBMUB/

http://www.lincoln.ac.uk/course/CMPCMSUM/

http://www.lincoln.ac.uk/course/CONCONUB/

http://www.lincoln.ac.uk/course/ECOFINUB/

http://www.lincoln.ac.uk/course/EGRELCUB/

http://www.lincoln.ac.uk/course/ELECNSUB/

http://www.lincoln.ac.uk/course/ENLHSTUB/

http://www lincoln.ac.uk/course/FDSOPMUB/

http://www.lincoln.ac.uk/course/GEPGEPUB/

http://www.lincoln.ac.uk/course/ISGISGUB/

http://www.lincoln.ac.uk/course/ISTISTUB/

http://www.lincoln.ac.uk/course/JOUINVUB/
http://www.lincoln.ac.uk/home/international/internationalscholarships/
http://www.lincoln.ac.uk/home/opendays/postgraduatevisits/
http://www.lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/howtoapply/fag/

http://www .lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/howtoapply/personalstatements/
http://www .lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/teachingandlearning/researchengagement/
https://www.lincoln.ac.uk/home/applicants/
https://www.lincoln.ac.uk/home/international/erasmusopportunities/
https://www.lincoln.ac.uk/home/research/

The URLs listed above are the pages scraped on the Lincoln website in order, before the classifier
had assessed any content. Included are pages that would clearly not be course information based on
the URL, like “...home/research/”, “...opendays” and “...schoolstaff”. Once the classifier had assessed
these pages it found one of the pages from the “.../course/” node to be course information. From
this point on the bot stuck to course URLs. This was the case despite subsequent classifications
assessing very few of the pages returned to be course information.

lastNode nCourselnfo nPages hitRate
1 http://www.lincoln.ac.uk/course/ 9 311 0.02893891
2 http://www_lincoln.ac.uk/home/course/ 1 4 0.25
3 http://www_lincoln.ac.uk/course/GEPGEPUB/ 1 1 1

Several returned 404 pages after appearing to be old links, but many more were clearly incorrectly
classified. In this case, the good selection of starting point meant that poor performance of the
classifier was compensated for. The pages scraped in the first 50 (pre classification) were not close
enough to course information to get the class and cause further scraping; high precision in
classifying course information stopped the bot going down the wrong path. A production system
would benefit from being able to override the classifications and then include them into another
iteration of the automatic classifier.



